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Renaud Ruamps,† Reḿi Maurice,‡ Coen de Graaf,¶,§ and Nathalie Guiheŕy*,†
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ABSTRACT: A systematic study has been undertaken to determine how local
distortions affect the overall (molecular) magnetic anisotropies in binuclear
complexes. For this purpose we have applied a series of distortions to two
binuclear Ni(II) model complexes and extracted the magnetic anisotropy
parameters of multispin and giant-spin model Hamiltonians. Furthermore, local
and molecular magnetic axes frames have been determined. It is shown that
certain combinations of local distortions can lead to constructive interference of
the local anisotropies and that the largest contribution to the anisotropic
exchange does not arise from the second-rank tensor normally included in the
multispin Hamiltonian, but rather from a fourth-rank tensor. From the
comparison of the extracted parameters, simple rules are obtained to maximize
the molecular anisotropy by controlling the local magnetic anisotropy, which
opens the way to tune the anisotropy in binuclear or polynuclear complexes.

1. INTRODUCTION

Magnetic anisotropy is the origin of the single molecule magnet
(SMM) behavior1−5, which consists of a slow relaxation of the
magnetization and a blocking of the magnetization for low
enough temperatures. Since this bistable behavior may lead to
technological applications in the domain of data storage6 and
quantum computing,7−9 the understanding of the microscopic
origin of magnetic anisotropy has received considerable interest
during the last two decades. For most of the transition metal
(TM) complexes, the property arises from the loss of
degeneracy of the MS components of the ground spin state S
due to relativistic effects, in particular the spin−orbit coupling,
combined with geometrical distortions from the highly
symmetric octahedral or tetrahedral situations. This phenom-
enon is called the zero-field splitting (ZFS) and is characterized
by the axial D and the rhombic E parameters. Magnetic
anisotropy can also be observed in cases where the angular
momentum is not quenched in the pure electronic ground
state, due to for instance molecular orbital (near-)degeneracy in
TM complexes, and lanthanide or actinide complexes. In such
cases a pseudospin S ̃ can be defined, which may significantly
differ from the true spin state.10

For an even number of unpaired electrons, bistable behavior
occurs when the complex has a uniaxial magnetic anisotropy
and the two maximal |MS| components of the ground spin state
are the lowest degenerate states, that is, when E = 0 and D is
large and negative. In case of nonzero rhombic anisotropy (E ≠
0), the Ms

min andMs
max components are coupled, and the ground

state is a linear combination of MS components. When D is

positive, the lowest |MS| component becomes the dominant
component of the ground state, and no bistability can be
observed. In the case of an odd number of unpaired electrons,
slow relaxation of the magnetization can a priori be observed
even if the ground Kramers doublet is essentially composed of
the lowest |MS| components (corresponding to a positive D
value), and even if the rhombic parameter E does not vanish.11

Nevertheless, such systems are not very common, and also for
odd-electron systems negative D-values are central to SMM
behavior. The synthesis of new objects with improved
anisotropy characteristics rests on the ability to control the
nature (uniaxial or in-plane) and the magnitude of the magnetic
anisotropy. Several theoretical works have been devoted in the
last years to the understanding of the chemical and geometrical
factors that govern the magnetic anisotropy in mononuclear
species.12−17 Because of the numerous driving forces
(configurations dn, geometries, strength of the ligand field,
etc.), the conclusions of these studies are quite often system-
specific, but theory allows one to understand and accurately
predict the magnetic anisotropy characteristics of mononuclear
species. In polynuclear complexes, the situation is more
complicated since additional factors are expected to come
into play:

• The different ions in the complex are likely to have
different local anisotropies. Indeed, the relativistic effects,
responsible for the loss of degeneracy of the spin
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components of the ground spin state Si of each ion i, are
essentially local and hence very sensitive to the local
environment of each ion, which may significantly differ
from ion to ion.

• Intersite anisotropic interactions (such as the anisotropic
exchange) may be present, affecting the characteristics of
the overall magnetic anisotropy of the polynuclear
complex, here called the molecular anisotropy.

The main aim of the present study is to advance the
understanding of synergistic effects between local anisotropies.
We consider model binuclear complexes constituted of two
Ni(II) ions adopting various geometries for which both the
nature and the magnitude of the local anisotropies may or may
not be different. In all the cases considered, the parameters
characterizing the local anisotropies are determined and
confronted to those of the molecular magnetic anisotropy of
the complex. Two types of anisotropic spin Hamiltonians can
be used to characterize the ZFS of polynuclear complexes:

• The giant-spin Hamiltonian reproduces the energy levels
of a single spin state, usually the ground spin state.
Nevertheless several giant-spin Hamiltonians can be
extracted to describe the energy levels of all the different
spin states of a complex. When the molecular system
contains four unpaired electrons or more (S ≥ 2), and in
particular in the weak-exchange limit, that is, when the
mixing between the ground and the excited spin states is
non-negligible, this model Hamiltonian contains spin
operators of higher order than 2.

• The multispin Hamiltonian reproduces the energy of the
MS components of all spin states arising from the
coupling between the local spin states of the para-
magnetic ions. This Hamiltonian is spanned in the
uncoupled |Sa,MSa,Sb,MSb⟩ basis and accounts for the spin
mixing.

In recent studies, the physical content of these two
Hamiltonians has been confronted to ab initio calculations
based on the all-electron Hamiltonian.18,19 It was shown that
the usual approximations made in these models are not suitable
to reproduce the interactions resulting from the ab initio
calculations of a binuclear Ni(II) complex in the weak-exchange
limit. In the case of the giant-spin Hamiltonian, simple
additional operators were sufficient to consistently introduce
the spin-mixing effect on the effective splitting and mixing of
the MS components of the ground spin state, and all non-
negligible interactions could be extracted.19 Concerning the
multispin Hamiltonian, it was shown that a biquadratic operator
and a four-rank tensor should be introduced to reproduce
accurately all the effective non-negligible interactions arising
from the all-electron Hamiltonian.18 Unfortunately, the number
of these interactions was too large, and a full extraction could
not be performed. Owing to recent advances in our extraction
procedure, such an extraction is now possible, and an important
objective of the present work is to determine all non-negligible
anisotropic interactions. Quite surprisingly, it will be shown
that the fourth-rank tensor actually brings the main
contributions to the exchange anisotropy.
It should be stressed that relations between the parameters of

the local and molecular anisotropy tensors already exist20−23

and that it is actually possible to determine the molecular
magnetic anisotropy tensors by combining the local ones if the
following two hypotheses are made: (i) the anisotropy axes on
both magnetic centers are parallel, and (ii) the anisotropic

intersite interactions of the two centers are negligible. The
present Paper quantifies and discusses the various anisotropic
interactions including those of the fourth-rank symmetric
tensor from ab initio calculations, allowing us to determine the
local and molecular anisotropies without the necessity of the
mentioned assumptions.
The next section briefly presents the procedure of extraction

of the model interactions from the effective Hamiltonian theory
and provides the computational information. Section 3 recalls
the physics of the two considered spin Hamiltonians and
presents a method for the determination of the molecular and
local magnetic axes frames. Section 4 discusses the magnitude
and nature of the extracted local and molecular anisotropic
interactions and analyzes interference effects between local
anisotropies on the molecular anisotropy.

2. METHOD OF EXTRACTION AND COMPUTATIONAL
INFORMATION

As shown in previous studies,24−27 it is possible to establish the
relevance of any model Hamiltonian and to extract its
constitutive interactions by using the effective Hamiltonian
theory. In combination with correlated ab initio calculations
performed using the all-electron Hamiltonian, the effective
Hamiltonian theory enables one to numerically evaluate all the
matrix elements of a model Hamiltonian. This method has
successfully been applied to mononuclear and binuclear
systems to determine anisotropic interactions of the giant-
spin and multispin Hamiltonians.13,18,19,28−31

The effective Hamiltonian theory32,33 enables one to extract
from accurate ab initio calculations the most rigorous effective
Hamiltonian working in the same model space as the model
Hamiltonian. This effective Hamiltonian is then compared to
the model one. In the des Cloizeaux formalism,33 the general
expression of the effective Hamiltonian is

∑̂ = |Ψ̃⟩ ⟨Ψ̃ |H E
k

k k k
eff

(1)

where Ψ̃k are the symmetrically orthogonalized and normalized
projections onto the model space of the all-electron
Hamiltonian eigenvectors Ψk, and Ek are the corresponding
eigenvalues. This formulation ensures that the eigenvalues of
the effective Hamiltonian are the energies of the all-electron
Hamiltonian, while the eigenvectors of the effective Hamil-
tonian are the projections onto the model space of the all-
electron Hamiltonian eigenvectors, such that

̂ |Ψ̃ ⟩ = |Ψ̃ ⟩H Ek k k
eff

(2)

Since it is possible to calculate all the matrix elements of the
effective Hamiltonian as

∑⟨ | ̂ | ⟩ = ⟨ | |Ψ̃ ⟩ ⟨Ψ̃ | ⟩i H j i E j
k

k k k
eff

(3)

the method provides more information than the low-energy
spectrum. Values of the interactions of the model Hamiltonian
can be assigned by confronting these numerical matrix elements
to their analytical expression in the model Hamiltonian.
The ab initio calculations were performed using the Spin−

Orbit State-Interaction (SO-SI) method34,35 implemented in
the MOLCAS package.36,37 The method performs a variational
treatment of the spin−orbit couplings between the lowest
selected states. The preliminary spin−orbit free calculations
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account for nondynamic correlation effects through the
complete active space self-consistent field (CASSCF) method.
The active space contains the 16 d electrons in the 10 d orbitals
for the calculation of the magnetic anisotropy of the Ni(II)
binuclear species, that is, CAS(16,10)SCF. To compute the
local anisotropy tensors, the orbitals of each center were
considered active alternatively while the orbitals of the other
center were kept inactive; that is, CAS(8,5)SCF calculations
were carried out. Extended basis sets of ANO type38,39 were
used with the following contractions: 6s5p4d2f for Ni, 6s5p2d
for Cl, 4s3p1d for O and N, 3s2p for C, and 2s for H.

3. MODEL HAMILTONIANS AND THE MAGNETIC
AXES FRAME
3.1. Giant-Spin Hamiltonians and Molecular Aniso-

tropy Tensors. The simplest description of magnetic
anisotropy in polynuclear systems is provided by the giant-
spin approximation.40−43 The use of this Hamiltonian is
physically justified when the spin ground state of the molecule
is sufficiently separated in energy from the other spin multiplets
such that the magnetic properties can be described using a
single spin ground state. Simultaneously, the ZFS of other spin
multiplets can be independently described, which leads to a
block-spin Hamiltonian if all the coupled spin states and the
isotropic couplings are considered. In this work, we will focus in
particular on the D and E parameters of the triplet and quintet
states, referred to as D1, E1, D2, and E2, respectively.
The giant-spin Hamiltonian can be expressed in terms of the

standard Stevens equivalent operators44 and additional
operators, which were shown to be necessary when S = 2 in
the case of a binuclear complex in the weak-exchange limit.19

Nevertheless, in case of a strong exchange coupling between the
magnetic ions,13 it can be reduced to its simple form:

̂ = ̂ ̂H SD SGSH (4)

where S ̂ is the spin operator of the state under consideration,
which in our case will be either the triplet (S = 1) or the quintet
(S = 2) state for which the second-rank associated tensors will
be denoted D1 and D2, respectively.
Higher than second-order terms become particularly

significant when couplings between the different spin states
(i.e., spin-mixing) are important but are small in the cases
considered here since the isotropic magnetic coupling is
relatively large (around 40 cm−1); that is, we are in a situation
close to the strong-exchange limit. The values of these
interactions are not reported here since the largest value

obtained is 0.09 cm−1, affecting the ⟨2, ±2|Ĥeff
|2, ∓2⟩ matrix

elements by not more than ∼1 cm−1. The determination of the
magnetic axes frame could therefore safely be performed using
only the second-order tensors S·D2·S for the quintet state and

S·D1·S for the triplet state (i.e., only the B2
0 and B2

2 parameters
for both spin blocks are extracted, namely D2, E2, and D1, E1).
For this purpose, we have artificially removed the couplings
between the singlet, triplet, and quintet MS components to
extract the block spin anisotropy tensors and consequently
diagonalize them to find the anisotropy axes, as proposed in a
previous work.19

3.2. Multispin Hamiltonian. For a binuclear complex
constituted of sites a and b, the multispin Hamiltonian works
on the basis of the uncoupled |MSa,MSb⟩ functions. It is
designed to reproduce the energy of all the states resulting from

the coupling between the ground spin states of each magnetic
site. In the present study, the Hamiltonian describes the energy
of all MS components of the singlet, triplet, and quintet states
after transformation to the coupled |S,MS⟩ basis. As recently
shown in a binuclear complex of Ni(II) in the weak-exchange
limit, it involves biquadratic operators and a fourth-rank tensor

D aabb. In the considered case, its expression is

̂ = ̂ · ̂ + ̂ ̂ + ̂ ̂ + ̂ ̂ + ̅ ̂ × ̂

+ ̂ ⊗ ̂ ̂ ⊗ ̂

H JS S S D S S D S S D S d S S

S S D S S( ) ( )

MS
a b a a a b b b a ab b ab a b

a a aabb b b (5)

where J is the isotropic magnetic exchange, Da and Db are local

tensors, Dab is the symmetric anisotropic exchange tensor, and
̅dab is the antisymmetric anisotropic term,20−23 known as the

Dzyaloshinskii−Moriya pseudovector. The components of
these two tensors read as follows:

Note that the analytical Hamiltonian matrix is given in
reference 18 for centrosymmetric cases.
To compare the nature of the local and molecular

anisotropies, the magnetic anisotropy axes were determined
for each Ni(II) ions of the binuclear system in its triplet and
quintet coupled spin states. For this purpose, the parameters of
the various tensors of both Hamiltonians giant-spin and
multispin were extracted from the effective Hamiltonian theory,
such that the model Hamiltonian matrix calculated using the
extracted values of the parameters reproduces at best the
numerical effective Hamiltonian matrix calculated using eq 3.
Because the proper magnetic axes of each tensor may be

different, all tensors are computed in a single axes frame and
rotations (P = Rz(ϕ)·Rx(θ)·Rz(ψ), where Rx and Rz stand for
rotation around the x and z axes, respectively, and φ, θ, ψ are
the Euler angles) between the proper axes frame of each tensor
and the axes frame of the calculation are introduced, enabling
one to determine the axial and rhombic parameters of all
magnetic anisotropy tensors. Tables 1 and 2 give the number
and nature of the nonzero parameters depending on the
symmetry point group for the second-rank tensor Dab, the
Dzyaloshinski−Moriya vector, and the fourth-rank tensor. κ =
±1 indicates the absence/presence of a symmetry element that
interchanges the two magnetic centers. To simplify the
extraction, we have imposed the following relation

+ + + + + =D D D D D D2 2 2 0xxxx yyyy zzzz xxyy xxzz yyzz

(7)

which has no other effect than ensuring that the anisotropic
part of the Hamiltonian is traceless. To further reduce the
number of independent variables, we make use of the fact that
several matrix elements in the numerical effective Hamiltonian
are (nearly) zero, whereas the corresponding elements of the
model Hamiltonian is a (sum of) parameter(s). This introduces
the following additional relations:

= =D D 0xxxx yyyy (8)
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= −D D D
1
2

( )xxyy xxxx xyxy
(9)

− = − +D D D Dxzxz yzyz xx yy
ab ab (10)

− = −D D D D2 2xxzz yyzz xx yy
ab ab (11)

For all cases studied here, there exists an appropriate axes
frame for which the fourth-rank tensor reduces to at most nine
independent components when these relations are imposed
instead of the 81 possible a priori.

4. RESULTS AND DISCUSSION
Geometrical deformations were applied to the model
complexes O[Ni(NCH)4CN]2 (M1, cases 1, 10, 11, 13; see
Figure 1) and O[Ni(NCH)4Cl]2 (M2, cases 2−9, and 12 see
Figure 2) to tune the characteristics of the local and molecular
anisotropies (see Figures 3−5 and Table 4). The stronger field
exerted by the CN− ligand makes it possible to study some
extra combinations of local anisotropies that are not easily
realized in the other complex, as specified below. Both model
complexes show strong antiferromagnetic isotropic coupling
and have an S = 0 ground state.

For each structure, the parameters of three different models
were extracted: (i) the local ZFS parameters Da

loc,Ea
loc,Db

loc,Eb
loc,

(ii) the giant-spin Hamiltonian parameters D2,E2 for the quintet
and D1,E1 for the triplet spin manifolds, and (iii) all the
parameters of the multispin Hamiltonian. The values are listed
in Table 3. The proper magnetic axes of all the tensors were
extracted and are represented in Figure 4 (both centers with
axial local anisotropy), Figure 5 (both centers with planar local
anisotropy), and Figure 6 (for axial and planar local
anisotropies). These figures report pictures of the applied
deformations and of the resulting anisotropy ellipsoids that
provide a visualization of the nature of the magnetic
anisotropies (both local and molecular for the quintet and
triplet states); the direction of the Dzyaloshinskii−Moriya
vector is also indicated when it is not zero. Note that the
conventions used to represent the anisotropy in Figures 4−6
are given in Figure 3.
Compression, stretching, and angular distortion generate

local anisotropies with peculiar and different features. The D4h
geometry (5) of O[Ni(NCH)4Cl]2 is such that Z is a hard axis
of magnetization for both centers, and they do not exhibit any
local rhombicity. In the D2h structures (6 and 2) the bonds have
been stretched or compressed in a single direction to generate
either two parallel easy planes (Table 5) or two collinear easy
axes (Table 4) of magnetization. In the D2d structures (7 and
3), the deformations are applied to different axes (X and Y)
such that the easy planes or the easy axes are orthogonal.
Angular distortions (of 10 degrees on each site) were applied to
both D2h geometries to generate the D2 structure in which the
local easy planes (8) are no longer parallel. The C2v (9)
geometry illustrates the cases of two local planar anisotropies,
where only one of them is rhombic. In the C2v (12) geometry,
one center has a planar anisotropy while the other has an axial
anisotropy and the easy axis is parallel to the easy plane. Finally,

Table 1. Nonzero Symmetric and Antisymmetric
Components of the Second-Rank Exchange Tensor45

point
groupa κb

symmetric
components

antisymmetric
components

number of
independent
components

C1 +1 xx,yy,zz,xy,xz,yz xy,xz,yz 9
Ci −1 xx,yy,zz,xy,xz,yz 6
Cs
c −1 xx,yy,zz,xy xz,yz 6

+1 xy 5
C2 −1 xx,yy,zz,xy xz,yz 6

+1 xy 5
D2 −1 xx,yy,zz xy 4
C2v

d −1 xx,yy,zz xz 4
+1 3

C2h −1 xx,yy,zz,xy 4
D2h −1 xx,yy,zz 3
D2d −1 xx = yy,zz 2
Cn +1 xx = yy,zz xy 3
Dn −1 xx = yy,zz xy 3
Cnv +1 xx = yy,zz 2
Sn,Cnh, −1 xx = yy,zz 2
Dnh,Dnd

aThe z-axis is the highest-order rotation axis. bκ = −1 if the magnetic
centers are exchanged by a symmetry operation, and κ = +1 otherwise.
cThe σh plane is the xy plane.

dThe two magnetic centers are in the xz
plane.

Table 2. Nonzero Symmetric Components of the Fourth-

Rank D aabb Tensor

point groupa symmetric components
number of
parametersb

C2,Cs,C2h xxxx, yyyy, zzzz, xxyy, xxzz, yyzz 14
& xyxy, xzxz, yyzz, xxxy, yyxy,zzxy

D2,C2v,D2h xxxx, yyyy, zzzz, xxyy, xxzz,yyzz 9
& xyxy, xzxz, yyzz

Cn,Cnv,Cnh,Dn,Dnd,Dnh xxxx = yyyy, zzzz,xxyy, xxzz = yyzz 6
& xyxy, xzxz = yzyz

aThe z-axis is the highest-order rotation axis. bSubject to reduction by
additional relations (see text).

Figure 1. Scheme of the molecular model 1 (M1). Geometrical
parameters: distances lax = Nia−Nax, lay = Nia−Nay, lbx = Nib−Nbx, lby =
Nib−Nby, angles θa = (Nax,Nia,O), θb = (Nbx,Nib,O) dihedral angles Φx
= (Nax,Nia,Nib,Nbx), Φy = (Nay,Nia,Nib,Nby), Φxy = (Nax,Nia,Nib,Nby).

Figure 2. Scheme of the molecular model 2 (M2). Geometrical
parameters: distances lax = Nia−Nax, lay = Nia−Nay, lbx = Nib−Nbx, lby =
Nib−Nby , dihedral angles Φx = (Nax ,Nia,Nib,Nbx), Φy =
(Nay,Nia,Nib,Nby), Φxy = (Nax,Nia,Nib,Nby).
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in the C1 structure (4) the two local anisotropies are axial; one
of the easy axes is in the XY plane, and the other is in the XZ
plane.
The ligand CN− produces a stronger ligand field than the

NCH one, which permits the study of other combinations of
local anisotropies. In the D4h structure (1) of O[Ni-
(NCH)4CN]2, the local axial anisotropies share the same easy
axis Z. The C4v structure (11) has one axial local anisotropy
with the easy axis Z and a local planar anisotropy with the easy
plane XY. In the C2v structure (13), one center has an axial
anisotropy with the easy axis Z, while the other has a planar
anisotropy with the easy plane YZ.
From the comparison of the values of the different local and

molecular anisotropy parameters, a series of conclusions can be
extracted, which will be discussed below in a point-by-point
fashion.

• The magnetic axes frames and local anisotropy
parameters extracted from the calculations performed
with one or two active magnetic centers are very similar,
showing the transferability of these parameters from the
“embedded” monomer to the dimer. The small
discrepancies are due to the bias introduced in the
calculations of the local tensors by the arbitrarily imposed
closed-shell character of the inactive Ni(II) center. The
values of the local anisotropy parameters that should be
considered as the most precise are those extracted from
the calculations in which the two magnetic centers are
active.

• The values of Dab and Eab (anisotropic exchange
parameters) are very small and slightly more important
when the local anisotropy is planar rather than axial. The
anisotropy of the interaction between the two anisotropic

Figure 3. Conventions used to schematize the nature of the magnetic anisotropy and to show the magnetic axes frame of the D-tensors. A prolate
ellipsoid indicates an axial anisotropy, while an oblate ellipsoid refers to a planar anisotropy. Hard axes and hard planes are represented in black,
while easy axes and easy planes are in red. In absence of rhombicity only one axis is represented.

Figure 4. Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of the various local and molecular anisotropy tensors
for different geometries in which local axial anisotropies have been imposed. The compound number and the model compound (either M1 or M2)
are indicated in the left column.
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Figure 5. Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of the various local and molecular anisotropy tensors
for different geometries in which local planar anisotropies have been imposed. The compound number and the model compound (either M1 or M2)
are indicated in the left column.

Table 3. Values of Extracted Parameters in cm−1

cases 1 2 3 4 5 6 7 8 9 10 11 12 13

SPG D4h D2h D2d C1 D4h D2h D2d D2 C2v D2d C4v C2v C2v

Da
loca −3.1 −21.9 −19.4 −22.5 10.0 9.9 10.0 8.5 9.9 15.0 −4.3 2.2 −3.8

Db
loc −3.1 −21.9 −19.4 −24.4 10.0 9.9 10.0 8.5 9.6 15.0 2.1 −21.7 5.4

Ea
loc 0b 3.7 2.8 0.6 0 1.6 1.5 1.8 1.5 1.3 0 0.1 1.1

Eb
loc 0 3.7 2.8 0.1 0 1.6 1.5 1.8 0.0b 1.3 0 2.6 0.0

D2 −2.4 −6.7 2.5 −6.6 2.5 2.5 2.5 1.6 2.5 −2.2 −1.5 −3.6 −2.5
E2 0 0.7 0 0.6 0 0.5 0 0.2 0.2 0 0 0.2 0.3
D1 7.6 19.2 −6.9 18.6 −6.6 −6.7 −6.6 −3.7 −6.7 9.7 5.2 8.6 8.0
E1 0 2.3 0 2.4 0 1.4 0 0.5 0.7 0 0 1.4 0.9
J 38.9 50.3 49.7 49.8 40.9 41.1 41.1 41.0 41.8 30.6 40.3 38.6 37.2
Da −2.2 −21.1 −21.9 −20.7 10.9 12.0 12.1 9.3 12.0 16.6 −3.6 4.6 −2.1
Db −2.2 −21.1 −21.9 −21.3 10.9 12.0 12.1 9.3 12.0 16.6 1.1 −20.3 4.2
Ea 0 0.4 0.3 0.6 0 1.4 1.4 1.4 1.4 3.1 0 0.0 0.0
Eb 0 0.4 0.3 0.1 0 1.4 1.4 1.4 0.0 3.1 0 0.9 0.5
Dab 0.3 0.3 0.3 0.3 0.4 5.2 0.4 0.4 5.1 −4.7 0.3 0.3 −4.7
Eab 0 0.0 0 0.0 0 0.9 0 0.0 0.5 0 0 0.0 0.6
Dzzzz −4.9 −4.0 −5.4 −3.6 −3.8 −4.8 −4.9 −4.9 −4.9 5.5 −3.6 −3.0 −5.4
Dxxzz 0 0 0 0 0 −1.3 0 0 −2.2 3.3 0 0 2.2
Dyyzz 0 0 0 0 0 −5.0 0 0 −4.1 3.3 0 0 4.7
Dxxyy 2.5 2.0 2.7 1.8 1.9 8.7 2.4 2.4 8.7 −9.4 1.8 1.5 −4.2
Dxyxy −1.2 −1.0 −1.4 −0.9 −0.9 −4.4 −1.2 −1.2 4.4 4.7 −0.9 −0.7 2.1
Dxzxz −1.3 −1.1 −1.4 −1.3 0 −0.6 −1.2 −1.3 −0.1 −0.3 −0.9 −0.8 −2.4
Dyzyz −1.3 −1.0 −1.4 −1.3 0 1.3 −1.2 −1.3 0.8 −0.3 −0.9 −0.8 −3.6

aThe values of the local tensors components marked with a superscripted “loc” have been extracted from calculations performed with a single
magnetic active center. bNote that “0” is used for terms that are strictly zero for symmetry reasons, while “0.0” indicates that the extracted value of
the parameter is smaller than 0.05 cm−1.
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centers originates essentially in the fourth-rank tensor
components. The planar nature of the anisotropy caused
by Dab appears to be almost unaffected by the distortions
in the considered systems, except for cases 10 and 13.

• The giant-spin second-rank tensors D1 and D2 exhibit
opposite anisotropic characteristics; the axes and planes
of easy and hard magnetization are systematically
opposite. For simplicity, only the values and features of
D2 will be commented on in the subsequent points. One
may also note that the absolute values of the anisotropy
parameters are larger in the triplet (D1) than they are in

the quintet (D2), as already explained by Bocǎ.
22 Because

of the presence of the fourth-rank tensor in the model
Hamiltonian considered in this work, and in some cases
due to the mismatch between the local tensor anisotropy
axes, the relations between the tensors found in this
study are different than those proposed earlier.22

• As expected, stretching and compression induce opposite
local anisotropy behavior with planar and axial
anisotropy, respectively. This results in positive and
negative D2 values.

• The Dzyaloshinskii−Moriya vector is either very small or
strictly zero by symmetry. Among the considered cases,
nonzero values were only found for the C2v and C1
symmetry point groups. Since the obtained values were
lower than 0.05 cm−1, they have not been reported here.

• When both local anisotropies are axial (see Figure 4), the
nature of the anisotropy of the quintet is usually axial
except when the two local axes are orthogonal (case 3).
The easy axis always bisects the two local easy axes (and
is therefore parallel or collineari.e., parallel and having
a common pointwith the local axes when these ones
are already parallel or collinear). Note that the values of
the molecular anisotropy parameters are usually drasti-
cally reduced in comparison to the local ones. The most
interesting situation (case 1) occurs when the local axes
are collinear, as expected. Note that in such a case the
absence of local rhombicity is maintained in the
molecular magnetic anisotropy of the complex and that

there is a (small) synergistic effect: the overall magnetic
axial parameter value for the high-spin block is −2.4
cm−1, while the local ones are −2.2 cm−1.

• When both local anisotropies are planar (see Figure 5),
the molecular magnetic anisotropy is usually planar, and
here again the values of the anisotropic parameters are
smaller than the local ones. Introducing local rhombicity
may actually be interesting for tuning the nature of the
overall anisotropy of the complex. Indeed, if the local
planes are parallel and the local easy axes are
perpendicular, the overall magnetic anisotropy does not
exhibit any rhombicity (case 7). When the local easy axes
have an angle, the resulting easy axis bisects the two local
ones (cases 6 and 8). The most interesting situation
occurs when the local easy planes are orthogonal and the
local easy axes are collinear, since it is possible to
generate a purely axial anisotropy (negative axial
parameter and no rhombicity).

• When the nature of the local anisotropies is different
(one axial and one planar, cases 11−13; see Figure 6), it
is possible to generate an axial molecular magnetic
anisotropy independent of the orientation of the local
easy axis and plane (cases 11 and 12). Two interesting
situations should be noted: (i) the absence of local
rhombicities (case 11) leads to the absence of rhombic
molecular magnetic anisotropy, and (ii) a synergistic
effect occurs when the local easy axes are collinear as in
case 13, where the local axial parameter Da is −2.1 cm−1,
while the overall axial parameter D2 is −2.5 cm−1.

5. SUMMARY AND PERSPECTIVES
This work is a follow-up of previous theoretical studies in which
it was shown that both the commonly applied giant-spin and
multispin Hamiltonians are not appropriate for the description
of the anisotropy of binuclear complexes, in particular in the
weak-exchange limit.18,19 Because the values of the numerous
parameters of the multispin Hamiltonian involving the fourth-
rank tensor components could not be extracted up to now,18 a
method of extraction that makes use of the effective
Hamiltonian theory was implemented here and successfully

Figure 6. Ellipsoids representing the axial or planar anisotropy and magnetic anisotropy axes of the various local and molecular anisotropy tensors
for different geometries in which both an axial and a planar local anisotropies have been imposed. The compound number and the model compound
(either M1 or M2) are indicated in the left column.
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applied to complexes exhibiting different local anisotropies.
Rules to predict vanishing values of symmetric and
antisymmetric second-rank exchange tensors and symmetric
fourth-rank symmetric tensors were presented, illustrated (see
Figures 4−6), and tested on model molecules.
Several conclusions can be drawn from this work. Among the

most important ones, one should mention that the anisotropy
of the interactions between the two magnetic centers is
essentially caused by the symmetric fourth-rank tensor, while
the second-rank exchange tensor components are almost always
negligible. As a consequence, the relations between the
molecular anisotropy of the complex and the local ones are
no more quantitatively valid. Nevertheless, from a qualitative
point of view the nature of the overall magnetic anisotropy can
be anticipated from the local anisotropy, except when the
complex belongs to the weak-exchange regime. Also note that
the Dzyaloshinskii−Moriya term is very small in the considered
cases and that nonzero values were only obtained for symmetry
point groups lower than C2v. Obtaining larger antisymmetric
terms would require other deformations, such as changing the
(Nia,O,Nib) angle away from 180°.
Combinations of local anisotropies were found to show

synergistic effects (increased axiality of the molecular magnetic
anisotropy in comparison to the local ones) in three cases. The
first one occurs when two local axial anisotropies with collinear
local easy axes are combined. The molecular axial anisotropy is
larger than the sum of the local anisotropies. This is in line with
the results of experimentalists working in the domain of
polynuclear single-molecule or single-chain magnets for
instance.46 The second case of synergy is observed when two
local planar, rhombic anisotropies are combined, leading to a
purely axial (no rhombicity) molecular anisotropy when the
local easy axes are collinear and the local easy planes are
perpendicular. Finally, axial and planar local anisotropies may
lead to an axial molecular anisotropy, and a synergy occurs
when the local easy axis of one center is in the local easy plane
of the other center.
To the best of our knowledge, values of the multispin

parameters are extremely difficult to extract from experiment.
In this respect, a theoretical approach that provides both
qualitative and quantitative information concerning magnetic
anisotropy appears as an interesting means to help synthetic
chemists control and improve this property. Forthcoming
papers will be devoted to the application of the here-presented
method of extraction to existing, synthesized compounds.
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(21) Bocǎ, R. Theoretical Foundations of Molecular Magnetism;
Elsevier: Amsterdam, 1999.
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